

For Gillette 258" Frame Gensets

May 20, 2025

258" LG Frame Genset Models

Location: Florida

Designed in compliance with: 2023 Florida Building Code, 8th Edition

ASCE 7 - 22 Minimum Design Loads for Buildings and Other Structures

2020 Aluminum Association Design Manual

ANSI/AISC 360-22 - Specification for Structural Steel Buildings

Anchoring: 1/2" Bolt/Anchors - Minimum (6) per side (12) total

Project Information

Project Name/Model # - Gillette 258" Frame Gensets

Project Number

Project Description - Sound Attenuated Generator Enclosure

Project Location - Florida

Customer

Mounting Location

- Ground

Enclosure Materials

Roof Beam - 11 Gauge CRS

Roof Panels - 0.102 Aluminum Panel - 5052-H34
Wall Panels - 0.102 Aluminum Panel - 5052-H34
Base Frame/Skid - Formed Aluminum/Steel 'C' Channel

Components

GenSet Manufacturer - Gillette

GenSet Size and Model - 258" Frame Gensets

Base - Formed Aluminum/Steel 'C' Channel

Fasteners/Hardware

		Bolt Size	Washer	Nut	Grade/Finish
Roof to Walls Wall to Wall Walls to Base Base to Slab/Tank	- - -	5/16" - 18 Bolts 5/16" - 18 Bolts 5/16" - 18 Bolts 1/2" Set Bolt Anchors	5/16" Washer 5/16" Washer 5/16" Washer Flat Washers	Nut Clip Nut Clip Nut Clip Hex Nuts	Grade 18-8/SS Grade 18-8/SS Grade 18-8/SS Grade 5/Galv.
				July HE	NIT BA

Specification Requirements

Wind Speed - 200 mph Exposure Category - D

Risk Category - III
Ground Snow Load (P_g Fig 7.1) - 0 psf
Ice Thickness (t Fig 10-2 to10-6) - 0.25 in

and Concurrent Wind Gust (V_c) - 30 Seismic Site Class B Matthew T. Baldwin, P.E. Florida License #64608

Supported by -

Base

Page 1

mph

Enclosure Dimensions & Component Weights

Gillette 258" Frame Gensets

Roof Style- Flat

Enclosure Dimensions (ft)

<u>Wall</u>	Length (ft)		Height (ft)
1	8	Х	9.4
2	8	Х	9.4
3	21.5	Х	9.4
4	21.5	Х	9.4

Base Dimensions

Width (Wall 1/2 Side) = 96 in Length (Wall 3/4 Side) = 258 in Height = 8 in

Roof/Eave Information

Roof Pitch Angle - (θ) = 0.0 Degrees Eave/Roof Height - h = 10.067

Structure Areas

Walls 1/2 Area - (w1) = 80.5 ft^2 = 11,597 in^2 Walls 3/4 Area - (w3) = 216.4 ft^2 = 31,166 in^2 Roof Area - (R) = 172.0 ft^2 = 24,768 in^2

Base Side 1/2 (T1) = 768.0 in 2 Base Side 3/4 (T3) = 2,064.0 in 2

Component Weights (lightest setup for worst case)

Genset = 6,000 lbs (conserative/most uplift to resist)

Enclosure = 1,000 lbs (Based on Aluminum to be conserative/most uplift to resist)

Base = 450 lbs (Based on Aluminum to be consertive/most uplift to resi

MWFRS Net Pressures

Gillette 258" Frame Gensets

Wind

Analytical Procedure method and Load Combinations from ASCE 7 are utilized in these calculations.

Enclosure Classification	-	Enclosed	t	
Exposure Category	-	D		
Basic Wind Speed	(V)	200	mph	
Importance Factor (Wind)	(I_w)	1.15		
Wind Directionality Factors	(K_d)	0.85		
Internal Pressure Coefficients	(GC_{pi})	± 0.18		
Velocity Pressure Exposure Coefficient	(K_z)	1.03		
Roof Mean Height Above Ground Level	(z)	10.73	ft	
Velocity Pressure	(q)	103.12	psf	

Wind Direction 1												
					Enclosure							
		Wall #			Roof							
		4 2 284		1 2 284		1 2 3&4		Parallel to Ridge				
		Į.	2	304	(C _p)1	$(C_p)1$ (Distance From Windward Edge)		(C _p)2				
		Windward	Leeward	Side	0 to 5.0	5.0 to 10.1	10.1 to 20.1	> 20.1	(Op)2			
Background Response Factor	(Q)	0.96	0.96	0.95			0.96					
Gust Effect Factors	(G)	0.91	0.91	0.90			0.91					
External Pressure Coefficients	(C_p)	0.80	-0.266	-0.70	-0.90	-0.90	-0.50	-0.3	-0.18			
Net Pressures with + (GC_{pi}) - psf	(Net _{p+})	56.3	-43.4	-83.6	-102.8	-102.8	-65.4	-46.6	-35.4			
Net Pressures with - (GC pi) - psf	(Net _{p-})	93.4	-6.3	-46.4	-65.7	-65.7	-28.2	-9.5	1.7			

Wind Direction 2										
			Enclosure							
		Wall #			Roof - Normal To Ridge			Ridge		
		3	4	1&2						
		3	Ť	10.2	(C _p)1 (Distance From Windward Edge)		(C _p)2	(C)2		
		Windward	Leeward	Side	0 to 5.0	> 5.0			(Op)2	
Background Response Factor	(Q)	0.95	0.95	0.96			0.9	5		
Gust Effect Factors	(G)	0.90	0.90	0.91			0.90	0		
External Pressure Coefficients	(C _p)	0.80	-0.5	-0.70	-1.04	-0.70			-0.18	
Net Pressures with + (GC_{pi}) - psf	(Net _{p+})	55.7	-65.0	-84.1	-115.1	-83.6			-35.3	·
Net Pressures with - (GC_{pi}) - psf	(Net _{p-})	92.9	-27.9	-46.9	-78.0	-46.4			1.8	

Plus and minus signs signify pressures acting toward or away from the surfaces, respectively.

Snow

Importance Factor (Snow)	(I_s)	1.1
Exposure Factor	(C _e)	8.0
Thermal Factor	(C_t)	1.2
Slope Factor	(C _s)	1.0

Flat Roof Snow Load (p_s) 0 psf

Seismic

Importance Factor (Seismic)	(I_{sm})	1.25	
Mapped Acceleration Parameter	(S _s)	0.14	Figures 22-1 Thru 22-14
Mapped Acceleration Parameter	(S ₁)	0.07	Figures 22-1 Thru 22-14
Site Coefficient	(F_a)	1	
Site Coefficient	(F_{v})	1	
MCE Spectral Resp. Accel. Short Per.	(S_{MS})	0.140	
MCE Spectral Resp. Accel. 1-s Period	(S _{M1})	0.07	
Design Spectral Accel. Short Period	(S _{DS})	0.093	
Design Spectral Accel. 1-s Period	(S_{D1})	0.04667	
Fundamental Period of Structure	(T_a)	0.107	sec
Long Period Transistion Period	(T_L)	8	sec Figure 22-15 Thru 22-20
Seismic Design Category	-	Α	
Total Effective Seismic Weight	$(W_{\it eff})$	11,048	lbs
Response Modification Coeficient	(R)	2	Table 12.2-1
System Overstrength Factor	(Ω_{o})	2.5	Table 12.2-1
Deflection Amplification Factor	(C_d)	2	Table 12.2-1
Seismic Response Coefficient	(C _s)	0.058	

Resultant Seismic Forces

Horizontal Seismic Load Effect - (E_h) Force at Base of Base = 0.1 kips

Force at Top of Base = 0.1 kips

Force at Top/Bottom of Enclosure = 0.01 kips

Force on Silencer = 0 kips

Vertical Seismic Load Effect $(E_v) = 0$ (Factor, Used With Deadweight in Load Combinations)

Matthew T. Baldwin, P.E. Florida License #64608

Structural Calculations - Roof

Gillette 258" Frame Gensets

Critical Loads & Pressures

Wind Pressures	Snow Pressure	Seismic Load		
Downforce 1.845 psf = 0.01 psi Uplift -115.1 psf = -0.80 psi	· '	Horizontal = 10 lbs Vertical Factor = 0		
Roof Live Load				

Downforce 20.0 psf = 0.1389 psi or 300 lbs Concentrated Load

Pressures & loads are the numerical maximums to be analyzed for shear, bending tension, and compression.

Section Properties

11 Gauge CRS

Cross Sectional Area (A) $= 1.14 \text{ in}^2$ Moment of Inertia - x $= 1.092 \text{ in}^4$ Moment of Inertia - y (I_y) N/A in⁴ Section Modulus - x $(S_x) = 1.127 \text{ in}^3$ Section Modulus - y $(S_v) =$ N/A in³ Radius of Gyration - x $(r_x) =$ 0.978 in Radius of Gyration - y (r_y) N/A in

Weight $(\omega) = 0.120$ lbs/in Modulus of Elasticity (E) = 2.90E+04 ksi Safety Factor $(\Omega) = 1.95$ Plastic Section Mod. - x $(Z_x) = 0.24$ Plastic Section Mod. - y $(Z_y) = 0.24$

Tensile Ultimate Strength $(F_{tu}) = 58 \text{ ksi}$ Tensile Yield Strength $(F_{ty}) = 36 \text{ ksi}$ Compressive Yield Strength $(F_{cy}) = 22 \text{ ksi}$ Shear Ultimate Strength $(F_{su}) = 36 \text{ ksi}$

Roof Frame Calculations

Member Designed for Forces Acting on the Strong Axis

Interior Beam Critical Member Dimensions

Interior Beam Length $(L_i) = 86$ in Load Spanned Width $(W_i) = 32.88$ in

Interior Beam Calculated Forces

Distributed Loads

Weight of Beam $(\omega) = 0.029$ lbs/in Wind Load Downforce $(W_d) = 0.421$ lbs/in Wind Load Uplift Force $(W_u) = -26.288$ lbs/in

Shear Forces (Maximum at End)

Beam Weight Shear $(V_b) =$ 1.75 lbs Wind DownForce Shear $(V_{wd}) =$ 9.7 lbs Wind Uplift Shear $(V_{wu}) =$ -664.3 lbs **Total Shear Downward** = 11.5 lbs **Total Shear Upward** 662.5 lbs

 $(V_{bi}) =$ **Design Shear** 662.5 <u>lbs</u>

Stress Forces (Bending)

 $(M_b) =$ **Beam Weight Moment** 11 lb·in $(M_d) =$ Wind Downforce Moment 47 lb·in Wind Uplift Moment $(M_u) =$ -3,223 lb·in **Total Moments Downward** 59 **lb**·in **Total Moments Upward** 3,211 lb·in $(M_T) =$ **Design Moment** 3,211 lb·in psi

 $(\sigma_{bi}) =$ **Design Stress** 8,921

Interior Beam Design Calculations

Allowable Shear Strength

 $(S_1) =$ Slenderness Limit 1 -20.08 $(S_2) =$ Slenderness Limit 2 102.40 Slenderness Ratio (S) =18.0 Allowable Shear Stress 9,856 psi

Allowable Shear Strength $(V_n) =$ 3,548 lbs

Conclusion

 $< (V_n)$ (V_{bi}) 663 lbs 3,548 lbs OK

Allowable Stresses For Tension And Compression (Bending)

Tension

Allowable Tensile Stress (F_t) 54,778 psi

Compression

 $(S_1) =$ Slenderness Limit 1 25.0 $(S_2) =$ Slenderness Limit 2 125.0 (S) =Slenderness Ratio 41.3

Allowable Compressive Stress $(F_c) = 13,121 \text{ psi}$

> Allowable Compressive Stress is the controlling The failure design Therefore, $(F_b) =$ 13,121 psi

Conclusion

 (σ_{bi}) 8,921 psi < (F_b) 13,121 psi **OK**

Entire Roof Uplift Calculations

Roof Area

Area of Roof Subjected to Uplift (R) 19,008 in² (not including discharge hood area)

Roof Uplift Calculated Forces

Roof Weight $(\omega_a) =$ 102 lbs Wind Load Uplift Force -15,200 lbs $(w_{ru}) =$ Total Roof Design Uplift $(W_{ru}) =$ -15,098

Mounting Hardware - Roof Frame to Wall Panels

Screws Along Length - 1 Side 18 5/16" - 18 Bolts Screws Along Width - 1 Side 5 5/16" - 18 Bolts **Total Mounting Screws** 46 5/16" - 18 Bolts

Entire Roof Uplift Design Calculations

Grade 18-8/SS Ult. Strength 150,000 psi 5/16" Bolt Nominal Diameter 0.255 in 5/16" Bolt Effective Area 0.051 in² 5/16" Bolt Threads per Inch 18 = Washer Nominal Diameter 0.875 in Wall Panel Tensile Ult. Strength = 34 ksi Wall Panel Tensile Yield Strength 26 ksi Safety Factor 3 Wall Panel Nominal Thickness 0.0800 in Maximum Tensile Strength 566.7 lbs Maximum Shear/Bearing Strength = 408.6 lbs Max. Tensile Load per Bolt 408.6 lbs

Max. Total Screws Tensile Strength $(P_{ts}) =$ 18,794

Conclusion

Distributed Loads

15,098 18,794 lbs <u>OK</u> (W_{ru}) lbs < (P_{ts})

Roof Panel Uplift Calculations

Roof Panel Critical Member Dimensions

Critical Panel Length $(L_p) = 66.00 \text{ in}$ $(W_p) = 96.00 \text{ in}$ Critical Panel Width

Roof Panel Uplift Calculated Forces

Wind Load Uplift Force $(w_{pu}) =$ 5,066.5 lbs

Florida License #64608

Mounting Hardware - Roof Panel to Roof Frame

Screws Along Length - 1 Side 4 5/16" - 18 Bolts - Grade 18-8/SS Screws Along Width - 1 Side 5 5/16" - 18 Bolts - Grade 18-8/SS

Matthew T. Baldwin, P.E.

Roof Panel Uplift Design Calculations

Grade 18-8/SS Ult. Strength 150,000 psi 5/16" Bolt Nominal Diameter = 0.255 in 5/16" Bolt Effective Area 0.051 in^2 5/16" Bolt Threads per Inch 18 Washer Nominal Diameter 0.875 = in 34 Roof Panel Tensile Ult. Strength ksi Roof Panel Tensile Yield Strength = 26 ksi Safety Factor 3 **Roof Panel Nominal Thickness** 0.0800 in

Maximum Tensile Strength = Roof Frame (Accounts for screw pull-over and pull-out strengths)

Maximum Shear/Bearing Strength = 408.6

Max. Tensile Load per Screw = 408.6

Max. Total Screws Tensile Strength $(P_{ts}) = 7,354$ lbs

Conclusion

 (w_{pu}) 5,067 lbs < (P_{ts}) 7,354 lbs <u>OK</u>

Matthew T. Baldwin, P.E. Florida License #64608

Structural Calculations - Wall Panel

Gillette 258" Frame Gensets

Critical Loads & Pressures

Walls 1 & 2

Maximum Pressures Acting:

Toward 93.4 psf = 0.6488 psi Away -84.1 psf = -0.5838 psi

Walls 3 & 4

Maximum Pressures Acting:

Toward 92.9 psf = 0.6449 psi Away -83.6 psf = -0.5804 psi

Roof Forces on Critical Panel (From Roof Frame Calculations)

Maximum Downforce $(W_d) = 2,742$ lbs Wind Load Uplift Force $(W_{pu}) = 5,067$ lbs

Pressures and weights are the numerical maximums to be analyzed for shear, tension, and compression.

Critical Wall Panel Dimensions

Critical/Maximum Panel Width = 60.00 in Critical/Maximum Panel Height = 110.50 in

Section Properties

0.102 Aluminum Panel - 5052-H34

Cross Sectional Area (A) $= 6.12 \text{ in}^2$ Moment of Inertia - x (I_x) $= 0.005 \text{ in}^4$ Moment of Inertia - y $(I_{\nu}) =$ N/A in⁴ Section Modulus - x $(S_x) = 0.104 \text{ in}^3$ Section Modulus - y $(S_v) =$ N/A in³ Radius of Gyration - x (r_{\times}) 0.029 in Radius of Gyration - y (r_v) N/a in Weight $= 0.026 \text{ lbs/in}^2$ (ω) Modulus of Elasticity = 1.02E+04 ksi (E) Safety Factor 1.95 $(\Omega) =$ Plastic Section Mod. - $x (Z_x) =$ 0.13 Plastic Section Mod. - y (Z_v) = 0.13 Tensile Ultimate Strength (F_{tu}) = 34 ksi

Tensile Ultimate Strength $(F_{tu}) = 34 \text{ ksi}$ Tensile Yield Strength $(F_{ty}) = 26 \text{ ksi}$ Compressive Yield Strength $(F_{cy}) = 24 \text{ ksi}$ Shear Ultimate Strength $(F_{su}) = 20 \text{ ksi}$

Wall Panel Calculations

Critical Wall Area

Area of Wall Panel (W) = $6,630.0 \text{ in}^2$

Mounting Hardware - Roof Frame to Wall Panels

Screws Along Height - 1 Side = 5 5/16" - 18 Bolts Screws Along Width - 1 Side = 4 5/16" - 18 Bolts

Total Mounting Screws = 18 5/16" - 18 Bolts

Grade 5 Ultimate Strength 5/16" Bolt Nominal Diameter	= =	150,000 0.255	psi in
5/16" Bolt Effective Area	=	0.051	in ²
5/16" Bolt Threads per Inch	=	18	
Washer Nominal Diameter	=	0.875	in
Roof Panel Tensile Ult. Strength	=	34	ksi
Roof Panel Tensile Yield Strength	=	26	ksi
Safety Factor	=	3	
Roof Panel Nominal Thickness	=	0.1020	in

Maximum Tensile Strength = Roof Frame

Maximum Tensile Strength = 233.0

Maximum Shear/Bearing Strength = 366.0

(Accounts for screw pull-over and pull-out strengths)

Max. Tensile Load per Bolt = 233.0

Max. Total Screws Tensile Strength $(P_{ts}) = 4,569$ lbs

Conclusion

 (w_{pu}) 4,301 lbs < (P_{ts}) 4,569 lbs **OK**

Matthew T. Baldwin, P.E. Florida License #64608

Structural Calculations - Enclosure to Base

Gillette 258" Frame Gensets

Critical Pressures & Loads

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

To be conservative, roof downforce is neglected.

Net Pressures with + Internal Pressure(+Gcpi)

Walls 1 & 2 -	99.7	psf =	0.6925	psi
Wall 3 or 4 -	83.6	psf =	0.5804	psi
Roof Uplift -	102.8	psf =	0.7138	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	99.7	psf =	0.6925	psi
Wall 3 or 4 -	46.4	psf =	0.3226	psi
Roof Uplift -	65.7	psf =	0.4560	psi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

Walls 3 & 4 -	120.7	psf =	0.8384	psi
Wall 1 or 2 -	84.1	psf =	0.5838	psi
Roof Uplift -	115.1	psf =	0.7996	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 3 & 4 -	120.7	psf =	0.8384	psi
Wall 1 or 2 -	46.9	psf =	0.3260	psi
Roof Uplift -	78.0	psf =	0.5418	psi

Seismic

Horizontal Seismic Force $(E_h) = 10$ lbs

Enclosure Critical Dimensions & Weights

Total Enclosure Weight	$(W_t) =$	7,000.0	lbs	(Includes all components)
Walls 1/2 Area -	(w1) =	11596.8	in ²	
Walls 3/4 Area -	(w3) =	31166.4	in ²	
Roof Area -	(R) =	24768.0	in ²	

Enclosure Calculated Forces

Maximum Wind Load Forces on Walls

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Walls 1/2 -	=	8,031	lbs
Wall 3 or 4	. =	18,088	lbs
Roof Uplift -	- =	17,679	lbs

Net Forces with - Internal Pressure (-Gcpi)

Walls 1/2 - = 8,031 lbs Wall 3 or 4 - = 10,053 lbs Roof Uplift - = 11,293 lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 - = 26,131 lbs Wall 1 or 2 - = 6,770 lbs Roof Uplift - = 19,806 lbs

Net Forces with - Internal Pressure (-Gcpi)

Walls 3/4 - = 26,131 lbs Wall 1 or 2 - = 3,780 lbs Roof Uplift - = 13,420 lbs

Enclosure Overturn Forces (Includes Seismic)

(Postive forces act upward, negative forces act downward)

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2 = 7,219 lbs Overturn on Walls 3/4 = 16,720 lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 1/2 = 4,027 lbs Overturn on Walls 3/4 = 8,472 lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 3/4 = 22,843 lbs Overturn on Walls 1/2 = 7,988 lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 3/4 = 19,651 lbs Overturn on Walls 1/2 = 4,095 lbs

Design Overturn Force $(O_E) = 22,843$ lbs Acting On Wall 3/4

Mounting Hardware - Enclosure to Base/Tank or Pad

To be conservative, bolt connections along the adjacent walls are neglected.

No. of Bolt Connections Along Wall 3/4 = 11 5/16" - 18 Bolts - Grade 18-8/S

Enclosure Overturn Design Calculations

Grade 18-8 Ultimate Strength = 150,000 psi

Grade 8.8 Nom. Tensile Stress = 112,500 psi (Includes Reduction Factor)

5/16" Bolt Effective Area = 0.051 in² Tensile Strength per Bolt = 2,873 lbs

Total Bolts Tensile Strength = 31,600 lbs

Conclusion

 (O_E) 22,843 lbs $< (R_V)$ 31,600 lbs <u>OK</u>

Structural Calculations - Enclosure With Base/Tank to Pad

Gillette 258" Frame Gensets

Critical Wind Load Pressures

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

To be conservative, roof downforce is neglected.

Net Pressures with + Internal Pressure(+Gcpi)

```
Walls 1 & 2 - 99.7 psf = 0.6925 psi
Wall 3 or 4 - 83.6 psf = 0.5804 psi
Roof Uplift - 102.8 psf = 0.7138 psi
```

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	99.7	psf =	0.6925	psi
Wall 3 or 4 -	46.4	psf =	0.3226	psi
Roof Unlift -	65.7	nsf =	0.4560	nsi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

Walls 3 & 4 -	120.7	psf =	0.8384	psi
Wall 1 or 2 -	84.1	psf =	0.5838	psi
Roof Uplift -	115.1	psf =	0.7996	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 3 & 4 -	120.7	psf =	0.8384	psi
Wall 1 or 2 -	46.9	psf =	0.3260	psi
Roof Uplift -	78.0	psf =	0.5418	psi

Seismic

Enclosure Horiz. Seismic Force	(EE_h)	=	10	lbs
Base/Tank Horiz. Seismic Force	(EB_h)	=	110	lbs

Enclosure With Base/Tank Critical Dimensions & Weights

Total Enclosure Weight	$(W_t) =$	7,450	lbs	(Includes all components)
Walls 1/2 Area -	(w1) =	12,365	in^2	(Includes Base/Tank Surface Area)
Walls 3/4 Area -	(w3) =	33,230	in^2	(Includes Base/Tank Surface Area)
Roof Area -	(R) =	24,768	in ²	

Enclosure With Base/Tank Calculated Forces

Maximum Wind Shear Forces on Walls Including Base/Tank

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

```
Walls 1/2 - = 8,563 lbs
Wall 3 or 4 - = 19,286 lbs
Roof Uplift - = 17,679 lbs
```


Matthew T. Baldwin, P.E. Florida License #64608

Net Forces with - Internal Pressure (-Gcpi)

Walls 1/2 - = 8,563 lbs Wall 3 or 4 - = 10,719 lbs Roof Uplift - = 11,293 lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 - = 27,861 lbs Wall 1 or 2 - = 7,219 lbs Roof Uplift - = 19,806 lbs

Net Forces with - Internal Pressure (-Gcpi)

Walls 3/4 - = 27,861 lbs Wall 1 or 2 - = 4,031 lbs Roof Uplift - = 13,420 lbs

Enclosure with Base/Tank Maximum Wind Force = 27,861 lbs Acting On Wall 3/4

Coefficient of Friction - Steel to Wet Concrete $(\mu_s) = 0.45$ Frictional Resisting Force (Total Weight x μ_s) = 3,353 Enclosure with Base/Tank Design Shear $(V_{EB}) = 24,509$

Enclosure With Base/Tank Overturn Forces (Inloudes Seismic)

Postive forces act upward

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2 = 7,260 lbs Overturn on Walls 3/4 = 18,074 lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 1/2 = 4,067 lbs Overturn on Walls 3/4 = 9,135 lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 3/4 = 24,891 lbs Overturn on Walls 1/2 = 7,988 lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 3/4 = 21,698 lbs Overturn on Walls 1/2 = 4,000 lbs

<u>Design Overturn Force</u> $(O_{EB}) = 24,891$ lbs Acting On Wall 3/4

Mounting Hardware - Enclosure With Base/Tank to Pad

No. of Bolt Connections Along Wall 3/4 = 6 Bolts 1/2" Set Bolt Anchors - Grade 5/Galv.

Enclosure With Base/Tank Design Calculations

Mounting Hardware - Shear and Tension

Grade 5 **Ultimate Stress** = 120,000 psiGrade 5 Nom. Shear Stress = 48,000 Grade 5 Nom. Tensile Stress = 90,000 psi 1/2" Bolt Nominal Area 0.159 in^2 Shear Strength per Bolt 4,198 lbs Tensile Strength per Bolt 7,155 lbs

Total Bolts Shear Strength $(R_{vb}) =$ 25,186 lbs Total Bolts Tensile Strength $(R_{tb}) =$ 42,930 lbs

Conclusion

Shear

 $24,509 \text{ lbs} < (R_{tb})$ 25,186 lbs (V_{EB})

Tension

 $24,891 \text{ lbs} < (R_{tb})$ 42,930 lbs <u>OK</u> (O_{EB})

