

For Gillette 186"/234" Frame Gensets

May 21, 2025

186"/234" Frame Genset Models: SPMI-8000

Location: Florida

Designed in compliance with: 2023 Florida Building Code, 8th Edition

ASCE 7 - 22 Minimum Design Loads for Buildings and Other Structures

2020 Aluminum Association Design Manual

ANSI/AISC 360-22 - Specification for Structural Steel Buildings

Anchoring: 1/2" Bolt/Anchors - Minimum (7) per side (14) total

Project Information

Project Name/Model # - Gillette 186"/234" Frame Gensets

Project Number

Project Description - Sound Attenuated Generator Enclosure

Project Location - Florida

Customer

Mounting Location

- Ground

Enclosure Materials

Roof Beam - 0.062 Aluminum Truss - 5052-H34
Roof Panels - 0.080 Aluminum Panel - 5052-H34
Wall Panels - 0.080 Aluminum Panel - 5052-H34
Base Frame/Skid - Aluminum Formed Steel 'C' Channel

Components

GenSet Manufacturer - Gillette

GenSet Size and Model - SPMI-8000

Base - Aluminum Formed Steel 'C' Channel

Fasteners/Hardware

		Bolt Size	Washer	Nut	Grade/Finish
Roof to Walls Wall to Wall Walls to Base Base to Slab/Tank	- - -	5/16" - 18 Bolts 5/16" - 18 Bolts 5/16" - 18 Bolts 1/2" Set Bolt Anchors	5/16" Washer 5/16" Washer 5/16" Washer Flat Washers	Nut Clip Nut Clip Nut Clip Hex Nuts	Grade 18-8/SS Grade 18-8/SS Grade 18-8/SS Grade 5/Galv.
				July HEV	NIT BA

Specification Requirements

Wind Speed 200 mph **Exposure Category** D Risk Category Ш Ground Snow Load (P_g Fig 7.1) -0 psf Ice Thickness (t Fig 10-2 to 10-6) -0.25 in and Concurrent Wind Gust (V_c) -30 mph Seismic Site Class В

Matthew T. Baldwin, P.E. Florida License #64608

Supported by -

Base

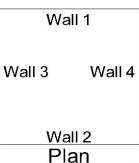
Page 1

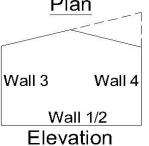
Enclosure Dimensions & Component Weights

Gillette 186"/234" Frame Gensets

Roof Style- Flat

Enclosure Dimensions (ft)


<u>Wall</u>	Length (ft)		Height (ft)
1	4.33	Х	6.021
2	4.33	Х	6.021
3	14.5	Х	6.021
4	14.5	Х	6.021


Base Dimensions

Width (Wall 1/2 Side) = 52 in Length (Wall 3/4 Side) = 132 in Height = 8 in

Roof/Eave Information

Roof Pitch Angle - (θ) = 0.0 Degrees Eave/Roof Height - h = 6.688

Structure Areas

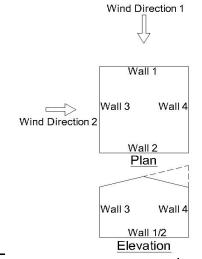
Walls 1/2 Area - (w1) = 29.0 ft^2 = 4,170 in^2 Walls 3/4 Area - (w3) = 97.0 ft^2 = 13,964 in^2 Roof Area - (R) = 62.8 ft^2 = 9,041 in^2

Base Side 1/2 (T1) = 416.0 in 2 Base Side 3/4 (T3) = 1,056.0 in 2

Component Weights (lightest setup for worst case)

Genset = 4,765 lbs Enclosure = 1,270 lbs

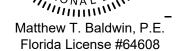
Base = 400 lbs


MWFRS Net Pressures

Gillette 186"/234" Frame Gensets

Wind

Analytical Procedure method and Load Combinations from ASCE 7 are utilized in these calculations.


Enclosure Classification	-	Enclosed	t
Exposure Category	-	D	
Basic Wind Speed	(V)	200	mph
Importance Factor (Wind)	(I_w)	1.15	
Wind Directionality Factors	(K_d)	0.85	
Internal Pressure Coefficients	(GC_{pi})	± 0.18	
Velocity Pressure Exposure Coefficient	(K_z)	1.03	
Roof Mean Height Above Ground Level	(z)	7.35	ft
Velocity Pressure	(q)	103.12	psf

Wind Direction 1									
		Enclosure							
		Wall#			Roof				
		1 2 204		2 3&4	Parallel to Ridge			je	
		ı	2	304	$(C_p)1$ (Distance From Windward Edge)			(C _p)2	
		Windward	Leeward	Side	0 to 3.3	3.3 to 6.7	6.7 to 13.4	> 13.4	(Op)2
Background Response Factor	(Q)	0.97	0.97	0.96			0.97		
Gust Effect Factors	(G)	0.91	0.91	0.91			0.91		
External Pressure Coefficients	(C _p)	0.80	-0.233	-0.70	-0.90	-0.90	-0.50	-0.3	-0.18
Net Pressures with + (GC _{pi}) - psf	(Net _{p+})	56.7	-40.4	-83.9	-103.2	-103.2	-65.6	-46.8	-35.5
Net Pressures with - (GC_{pi}) - psf	(Net _{p-})	93.8	-3.3	-46.8	-66.1	-66.1	-28.5	-9.7	1.6

Wind Direction 2										
			Enclosure							
		Wall #			Roof - Normal To Ridge				idge	
		3 4 1&2								
		3	4 102		$(C_p)1$ (Distance From Windward Edge)		(C _p)2			
		Windward	Leeward	Side	0 to 3.3	> 3.3			(Op)2	
Background Response Factor	(Q)	0.96	0.96	0.97			0.96	3		
Gust Effect Factors	(G)	0.91	0.91	0.91			0.91	1		
External Pressure Coefficients	(C _p)	0.80	-0.5	-0.70	-1.04	-0.70			-0.18	
Net Pressures with + (GC_{pi}) - psf	(Net _{p+})	56.2	-65.3	-84.4	-115.7	-83.9			-35.4	
Net Pressures with - (GC_{pi}) - psf	(Net _{p-})	93.3	-28.1	-47.3	-78.6	-46.8			1.8	

Plus and minus signs signify pressures acting toward or away from the surfaces, respectively.

Snow

Importance Factor (Snow)	(I_s)	1.1
Exposure Factor	(C _e)	8.0
Thermal Factor	(C_t)	1.2
Slope Factor	(C _s)	1.0

Flat Roof Snow Load (p_s) 0 psf

Seismic

Importance Factor (Seismic)	(I_{sm})	1.25	
Mapped Acceleration Parameter	(S _s)	0.14	Figures 22-1 Thru 22-14
Mapped Acceleration Parameter	(S ₁)	0.07	Figures 22-1 Thru 22-14
Site Coefficient	(F_a)	1	
Site Coefficient	(F_{v})	1	
MCE Spectral Resp. Accel. Short Per.	(S _{MS})	0.140	
MCE Spectral Resp. Accel. 1-s Period	(S _{M1})	0.07	
Design Spectral Accel. Short Period	(S _{DS})	0.093	
Design Spectral Accel. 1-s Period	(S_{D1})	0.04667	
Fundamental Period of Structure	(T_a)	0.077	sec
Long Period Transistion Period	(T_L)	8	sec Figure 22-15 Thru 22-20
Seismic Design Category	-	Α	
Total Effective Seismic Weight	$(W_{\it eff})$	7,314	lbs
Response Modification Coeficient	(R)	2	Table 12.2-1
System Overstrength Factor	(Ω_{o})	2.5	Table 12.2-1
Deflection Amplification Factor	(C_d)	2	Table 12.2-1
Seismic Response Coefficient	(C _s)	0.058	

Resultant Seismic Forces

Horizontal Seismic Load Effect - (E_h) Force at Base of Base = 0.1 kips

Force at Top of Base = 0.1 kips

Force at Top/Bottom of Enclosure = 0.013 kips

Force on Silencer = 0 kips

Vertical Seismic Load Effect $(E_v) = 0$ (Factor, Used With Deadweight in Load Combinations)

Matthew T. Baldwin, P.E. Florida License #64608

Structural Calculations - Roof

Gillette 186"/234" Frame Gensets

Critical Loads & Pressures

Wind Pressures	Snow Pressure	Seismic Load		
Downforce 1.75 psf = 0.01 psi Uplift -115.7 psf = -0.80 psi	· '	Horizontal = 13 lbs Vertical Factor = 0		
Roof Live Load				

Downforce 20.0 psf = 0.1389 psi or 300 lbs Concentrated Load

Pressures & loads are the numerical maximums to be analyzed for shear, bending tension, and compression.

Section Properties

0.062 Aluminum Truss - 5052-H34

Cross Sectional Area (A) $= 0.30 \text{ in}^2$ Moment of Inertia - x (I_x) $= 0.269 \text{ in}^4$ Moment of Inertia - y (I_y) N/A in⁴ Section Modulus - x $(S_x) = 0.309 \text{ in}^3$ Section Modulus - y $(S_v) =$ N/A in³ Radius of Gyration - x $(r_x) =$ 0.942 in Radius of Gyration - y (r_y) N/A in

Weight $(\omega) = 0.030$ lbs/in Modulus of Elasticity (E) = 1.02E+04 ksi Safety Factor $(\Omega) = 1.95$

Plastic Section Mod. - x (Z_x) = 0.18 Plastic Section Mod. - y (Z_y) = 0.18

Tensile Ultimate Strength $(F_{tu}) = 34 \text{ ksi}$ Tensile Yield Strength $(F_{ty}) = 26 \text{ ksi}$ Compressive Yield Strength $(F_{cy}) = 24 \text{ ksi}$ Shear Ultimate Strength $(F_{su}) = 20 \text{ ksi}$

Roof Frame Calculations

Member Designed for Forces Acting on the Strong Axis

Interior Beam Critical Member Dimensions

Interior Beam Length $(L_i) = 42.8$ in Load Spanned Width $(W_i) = 36.2$ in

Interior Beam Calculated Forces

Distributed Loads

Weight of Beam $(\omega) = 0.029$ lbs/in Wind Load Downforce $(W_d) = 0.440$ lbs/in Wind Load Uplift Force $(W_u) = -29.085$ lbs/in

Shear Forces (Maximum at End)

Beam Weight Shear $(V_b) =$ 1.75 lbs Wind DownForce Shear $(V_{wd}) =$ 9.7 lbs Wind Uplift Shear $(V_{wu}) =$ -664.3 lbs **Total Shear Downward** = 11.5 lbs **Total Shear Upward** 662.5 lbs

 $(V_{bi}) =$ **Design Shear** 662.5 <u>lbs</u>

Stress Forces (Bending)

 $(M_b) =$ **Beam Weight Moment** 11 lb·in $(M_d) =$ Wind Downforce Moment 47 lb·in Wind Uplift Moment $(M_u) =$ -3,223 lb·in **Total Moments Downward** 59 **lb**·in **Total Moments Upward** 3,211 lb·in $(M_T) =$ **Design Moment** 3,211 lb·in $(\sigma_{bi}) =$ **Design Stress** 8,921 psi

Interior Beam Design Calculations

Allowable Shear Strength

 $(S_1) =$ Slenderness Limit 1 -20.08 $(S_2) =$ Slenderness Limit 2 102.40 Slenderness Ratio (S) =18.0 Allowable Shear Stress 9,856 psi

Allowable Shear Strength $(V_n) =$ 3,548 lbs

Conclusion

 $< (V_n)$ (V_{bi}) 663 lbs 3,548 lbs OK

Allowable Stresses For Tension And Compression (Bending)

Tension

Allowable Tensile Stress (F_t) 14,551 psi

Compression

 $(S_1) =$ Slenderness Limit 1 25.0 $(S_2) =$ Slenderness Limit 2 125.0 (S) =Slenderness Ratio 41.3

Allowable Compressive Stress $(F_c) = 13,121 \text{ psi}$

> Allowable Compressive Stress is the controlling The failure design Therefore, $(F_b) =$ 13,121 psi

Conclusion

 (σ_{bi}) 8,921 psi < (F_b) 13,121 psi **OK**

Matthew T. Baldwin, P.E. Florida License #64608

Entire Roof Uplift Calculations

Roof Area

Area of Roof Subjected to Uplift (R) 9,041 in² (not including discharge hood area)

Roof Uplift Calculated Forces

Roof Weight 102 lbs Wind Load Uplift Force lbs $(w_{ru}) =$ -7,264 Total Roof Design Uplift $(W_{ru}) =$ -7,162 lbs

Mounting Hardware - Roof Frame to Wall Panels

Screws Along Length - 1 Side 10 5/16" - 18 Bolts Screws Along Width - 1 Side 3 5/16" - 18 Bolts **Total Mounting Screws** 26 5/16" - 18 Bolts

Entire Roof Uplift Design Calculations

Grade 18-8/SS Ult. Strength 150,000 psi 5/16" Bolt Nominal Diameter 0.255 in 5/16" Bolt Effective Area 0.051 in² 5/16" Bolt Threads per Inch 18 = Washer Nominal Diameter 0.875 in Wall Panel Tensile Ult. Strength = 34 ksi Wall Panel Tensile Yield Strength 26 ksi Safety Factor 3 0.0800 Wall Panel Nominal Thickness in Maximum Tensile Strength 566.7 lbs Maximum Shear/Bearing Strength = 408.6 lbs Max. Tensile Load per Bolt 408.6 lbs

Max. Total Screws Tensile Strength $(P_{ts}) =$ 10,623

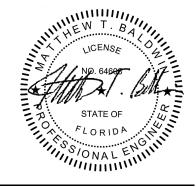
Conclusion

Distributed Loads

7,162 10,623 lbs <u>OK</u> (W_{ru}) lbs < (P_{ts})

Roof Panel Uplift Calculations

Roof Panel Critical Member Dimensions


Critical Panel Length $(L_p) = 73.40 \text{ in}$ $(W_p) = 52.00 \text{ in}$ Critical Panel Width

Roof Panel Uplift Calculated Forces

Wind Load Uplift Force $(w_{pu}) =$ 3,066.6 lbs

Mounting Hardware - Roof Panel to Roof Frame

Screws Along Length - 1 Side 3 5/16" - 18 Bolts - Grade 18-8/SS Screws Along Width - 1 Side 3 5/16" - 18 Bolts - Grade 18-8/SS

Matthew T. Baldwin, P.E.

Florida License #64608

Roof Panel Uplift Design Calculations

Grade 18-8/SS Ult. Strength	=	150,000	psi
5/16" Bolt Nominal Diameter	=	0.255	in
5/16" Bolt Effective Area	=	0.051	in ²
5/16" Bolt Threads per Inch	=	18	
Washer Nominal Diameter	=	0.875	in
Roof Panel Tensile Ult. Strength	=	34	ksi
Roof Panel Tensile Yield Strength	=	26	ksi
Safety Factor	=	3	
Roof Panel Nominal Thickness	=	0.0800	in

		Roof Frame	Z-Bar	(Accounts for screw
Maximum Tensile Strength	=		164.4	pull-over and pull-out strengths)
Maximum Shear/Bearing Strength	=	408.6	408.6 371.1	3 ,
Max. Tensile Load per Screw	=	408.6	164.4	

Max. Total Screws Tensile Strength $(P_{ts}) = 4,903$ lbs

Conclusion

 (w_{pu}) 3,067 lbs < (P_{ts}) 4,903 lbs <u>OK</u>

Matthew T. Baldwin, P.E. Florida License #64608

Structural Calculations - Wall Panel

Gillette 186"/234" Frame Gensets

Critical Loads & Pressures

Walls 1 & 2

Maximum Pressures Acting:

Toward 93.8 psf = 0.6514 psi Away -84.4 psf = -0.5861 psi

Walls 3 & 4

Maximum Pressures Acting:

Toward 93.3 psf = 0.6478 psi Away -83.9 psf = -0.5829 psi

Roof Forces on Critical Panel (From Roof Frame Calculations)

Maximum Downforce $(W_d) = 1,358$ lbs Wind Load Uplift Force $(W_{pu}) = 3,067$ lbs

Pressures and weights are the numerical maximums to be analyzed for shear, tension, and compression.

Critical Wall Panel Dimensions

Critical/Maximum Panel Width = 52.00 in Critical/Maximum Panel Height = 72.00 in

Section Properties

0.080 Aluminum Panel - 5052-H34

Cross Sectional Area (A) $= 4.11 \text{ in}^2$ Moment of Inertia - x (I_x) $= 0.048 \text{ in}^4$ Moment of Inertia - y $(I_{\nu}) =$ N/A in⁴ Section Modulus - x $(S_x) = 0.828 \text{ in}^3$ Section Modulus - y $(S_v) =$ N/A in³ Radius of Gyration - x (r_{\times}) 0.108 in Radius of Gyration - y (r_v) N/a in Weight $= 0.026 \text{ lbs/in}^2$ (ω) Modulus of Elasticity = 1.02E+04 ksi (E) 1.67

Safety Factor $(\Omega) = 1.67$ Plastic Section Mod. - x $(Z_x) = 0.13$ Plastic Section Mod. - y $(Z_y) = 0.13$

Tensile Ultimate Strength $(F_{tu}) = 34 \text{ ksi}$ Tensile Yield Strength $(F_{ty}) = 26 \text{ ksi}$ Compressive Yield Strength $(F_{cy}) = 24 \text{ ksi}$ Shear Ultimate Strength $(F_{su}) = 20 \text{ ksi}$

Wall Panel Calculations

Critical Wall Area

Area of Wall Panel (W) = $3,744.0 \text{ in}^2$

Mounting Hardware - Roof Frame to Wall Panels

Screws Along Height - 1 Side = 4 5/16" - 18 Bolts Screws Along Width - 1 Side = 8 5/16" - 18 Bolts

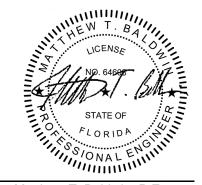
Total Mounting Screws = 24 5/16" - 18 Bolts

Grade 5 Ultimate Strength	=	150,000	psi
5/16" Bolt Nominal Diameter	=	0.255	in
5/16" Bolt Effective Area	=	0.051	in ²
5/16" Bolt Threads per Inch	=	18	
Washer Nominal Diameter	=	0.875	in
Roof Panel Tensile Ult. Strength	=	34	ksi
Roof Panel Tensile Yield Strength	=	26	ksi
Safety Factor	=	3	
Roof Panel Nominal Thickness	=	0.0800	in

Maximum Tensile Strength = Roof Frame

Maximum Tensile Strength = 388.7

Maximum Shear/Bearing Strength = 300.0


(Accounts for screw pull-over and pull-out strengths)

Max. Tensile Load per Bolt = 300.0

Max. Total Screws Tensile Strength $(P_{ts}) = 6.391$ lbs

Conclusion

 (w_{pu}) 2,439 lbs < (P_{ts}) 6,391 lbs <u>OK</u>

Matthew T. Baldwin, P.E. Florida License #64608

Structural Calculations - Enclosure to Base

Gillette 186"/234" Frame Gensets

Critical Pressures & Loads

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

To be conservative, roof downforce is neglected.

Net Pressures with + Internal Pressure(+Gcpi)

Walls 1 & 2 -	97.1	psf =	0.6743	psi
Wall 3 or 4 -	83.9	psf =	0.5829	psi
Roof Uplift -	103.2	psf =	0.7167	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	97.1	psf =	0.6743	psi
Wall 3 or 4 -	46.8	psf =	0.3251	psi
Roof Uplift -	66.1	psf =	0.4589	psi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

Walls 3 & 4 -	121.4	psf =	0.8432	psi
Wall 1 or 2 -	84.4	psf =	0.5861	psi
Roof Uplift -	115.7	nsf =	0.8034	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 3 & 4 -	121.4	psf =	0.8432	psi
Wall 1 or 2 -	47.3	psf =	0.3283	psi
Roof Uplift -	78.6	psf =	0.5456	psi

Seismic

Horizontal Seismic Force $(E_h) = 13$ lbs

Enclosure Critical Dimensions & Weights

Total Enclosure Weight	$(W_t) =$	6,035.0	lbs	(Includes all components)
Walls 1/2 Area -	(w1) =	4169.9	in^2	
Walls 3/4 Area -	(w3) =	13963.8	in ²	
Roof Area -	(R) =	9041.0	in^2	

Enclosure Calculated Forces

Maximum Wind Load Forces on Walls

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Walls 1/2 -	=	2,812	lbs
Wall 3 or 4 -	=	8,140	lbs
Roof Uplift -	=	6.479	lbs

Matthew T. Baldwin, P.E. Florida License #64608

Net Forces with - Internal Pressure (-Gcpi)

Walls 1/2 -	=	2,812	lbs
Wall 3 or 4 -	=	4,540	lbs
Roof Uplift -	=	4,149	lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 -	=	11,774	lbs
Wall 1 or 2 -	=	2,444	lbs
Roof Uplift -	=	7.264	lbs

Net Forces with - Internal Pressure (-Gcpi)

Walls 3/4 -	=	11,774	lbs
Wall 1 or 2 -	=	1,369	lbs
Roof Uplift -	=	4,933	lbs

Enclosure Overturn Forces (Includes Seismic)

(Postive forces act upward, negative forces act downward)

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2	=	871	lbs
Overturn on Walls 3/4	=	6.508	lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 1/2	=	-295	lbs
Overturn on Walls 3/4	=	2 563	lhs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 3/4	=	9,707	lbs
Overturn on Walls 1/2	=	1.178	lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 3/4	=	8,542	lbs
Overturn on Walls 1/2	=	-235	lbs

Design Overturn Force $(O_E) = 9,707$ lbs Acting On Wall 3/4

Mounting Hardware - Enclosure to Base/Tank or Pad

To be conservative, bolt connections along the adjacent walls are neglected.

No. of Bolt Connections Along Wall 3/4 = 8 5/16" - 18 Bolts - Grade 18-8/S

Enclosure Overturn Design Calculations

Grade 18-8 Ultimate Strength = 150,000 psi

Grade 8.8 Nom. Tensile Stress = 112,500 psi (Includes Reduction Factor)

5/16" Bolt Effective Area = 0.051 in² Tensile Strength per Bolt = 2,873 lbs

Total Bolts Tensile Strength = 22,982 lbs

Conclusion

 (O_E) 9,707 lbs < (R_v) 22,982 lbs **OK**

Structural Calculations - Enclosure With Base/Tank to Pad

Gillette 186"/234" Frame Gensets

Critical Wind Load Pressures

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

To be conservative, roof downforce is neglected.

Net Pressures with + Internal Pressure(+Gcpi)

```
Walls 1 & 2 - 97.1 psf = 0.6743 psi
Wall 3 or 4 - 83.9 psf = 0.5829 psi
Roof Uplift - 103.2 psf = 0.7167 psi
```

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	97.1	psf =	0.6743	psi
Wall 3 or 4 -	46.8	psf =	0.3251	psi
Roof Unlift -	66 1	nsf =	0 4589	nsi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

Walls 3 & 4 -	121.4 p	sf =	0.8432	psi
Wall 1 or 2 -	84.4 p	sf =	0.5861	psi
Roof Uplift -	115.7 p	sf =	0.8034	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 3 & 4 -	121.4	psf =	0.8432	psi
Wall 1 or 2 -	47.3	psf =	0.3283	psi
Roof Uplift -	78.6	psf =	0.5456	psi

Seismic

Enclosure Horiz. Seismic Force	(EE_h)	=	13	lbs
Base/Tank Horiz. Seismic Force	(EB_h)	=	73	lbs

Enclosure With Base/Tank Critical Dimensions & Weights

Total Enclosure Weight	$(VV_t) =$	6,435	lbs	(Includes all components)
Walls 1/2 Area -	(w1) =	4,586	in^2	(Includes Base/Tank Surface Area)
Walls 3/4 Area -	(w3) =	15,020	in^2	(Includes Base/Tank Surface Area)
Roof Area -	(R) =	9,041	in ²	

Enclosure With Base/Tank Calculated Forces

Maximum Wind Shear Forces on Walls Including Base/Tank

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

```
Walls 1/2 - = 3,092 lbs
Wall 3 or 4 - = 8,755 lbs
Roof Uplift - = 6,479 lbs
```


Matthew T. Baldwin, P.E. Florida License #64608

Net Forces with - Internal Pressure (-Gcpi)

Walls 1/2 - = 3,092 lbs Wall 3 or 4 - = 4,883 lbs Roof Uplift - = 4,149 lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 - = 12,664 lbs Wall 1 or 2 - = 2,688 lbs Roof Uplift - = 7,264 lbs

Net Forces with - Internal Pressure (-Gcpi)

Walls 3/4 - = 12,664 lbs Wall 1 or 2 - = 1,505 lbs Roof Uplift - = 4,933 lbs

Enclosure with Base/Tank Maximum Wind Force = 12,664 lbs Acting On Wall 3/4

Coefficient of Friction - Steel to Wet Concrete $(\mu_s) = 0.45$ Frictional Resisting Force (Total Weight x μ_s) = 2,896 Enclosure with Base/Tank Design Shear $(V_{EB}) = 9,769$

Enclosure With Base/Tank Overturn Forces (Inlcudes Seismic)

Postive forces act upward

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2 = 816 lbs Overturn on Walls 3/4 = 7,490 lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 1/2 = -349 lbs Overturn on Walls 3/4 = 3,037 lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 3/4 = 11,202 lbs Overturn on Walls 1/2 = 1,106 lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 3/4 = 10,037 lbs Overturn on Walls 1/2 = -359 lbs

<u>Design Overturn Force</u> $(O_{EB}) = 11,202$ lbs Acting On Wall 3/4

Mounting Hardware - Enclosure With Base/Tank to Pad

No. of Bolt Connections Along Wall 3/4 = 7 Bolts 1/2" Set Bolt Anchors - Grade 5/Galv.

Enclosure With Base/Tank Design Calculations

Mounting Hardware - Shear and Tension

Grade 5 **Ultimate Stress** = 120,000 psi Grade 5 Nom. Shear Stress = 48,000 psi Grade 5 Nom. Tensile Stress = 90,000 psi 1/2" Bolt Nominal Area in^2 0.159 Shear Strength per Bolt 3,816 lbs Tensile Strength per Bolt 7,155 lbs

Avail. Tensile Strength per Bolt = 1,781 lbs (Combined Tension and Shear)

Total Bolts Shear Strength $(R_{vb}) = 26,712$ lbs Total Bolts Tensile Strength $(R_{tb}) = 12,466$ lbs

Conclusion

Shear

 (V_{EB}) 9,769 lbs < (R_{tb}) 26,712 lbs <u>OK</u>

Tension

 (O_{EB}) 11,202 lbs $< (R_{tb})$ 12,466 lbs <u>OK</u>

