

For Gillette Generators - 246" Frame

February 24, 2020

SP-6500, SP-8000, PR-5400, & PR-6500

Location: Florida AMPS Project Number: 20190166

Designed in compliance with: 2017 Florida Building Code, 6th Edition

ASCE 7 - 10 Minimum Design Loads for Buildings and Other Structures

2015 Aluminum Association Design Manual

ANSI/AISC 360-10 - Specification for Structural Steel Buildings

2/24/2020

Project Information

Project Name/Model # - Gillette Generators - 246" Frame

Project Number - 20190166

Project Description - Sound Attenuated Generator Enclosure

Project Location - Florida

-

Mounting Location - Ground

Enclosure Materials

Roof Bracing - 11 Ga. Cold Rolled Steel Formed Channel

Roof Panels - 14 Ga. Cold Rolled Steel Panel
Wall Panels - 14 Ga. Cold Rolled Steel Panel

Base Frame - 8 Ga. Cold Rolled Steel Formed Channel

Components

GenSet Manufacturer - Gillette

GenSet Size and Model - SP-6500, SP-8000, PR-5400, & PR-6500 Supported by - Base Frame

Base - Steel

Air Intake

Louvers

Exhaust

Plenum -

Fasteners/Hardware

		Bolt Size	Washer	Nut	Grade/Finish
Roof Panels	-	5/16"-18 SS Bolts	Flat Washers	Hex Nuts	Grade 18-8/SS
Walls Panels	-	5/16"-18 SS Bolts	Flat Washers	Hex Nuts	Grade 18-8/SS
	-				
Enclosure to Base	-	5/16"-18 SS Bolts	Flat Washers	Hex Nuts	Grade 18-8/SS
Base Frame to Pad	-	1/2" Set Bolt Anchors	Flat Washers	Hex Nuts	Grade 5/Galv.
	-				
	-				

Specification Requirements

Wind Speed - 180 mph (Greater of Design or Site)

Exposure Category - D

Risk Category - III 2/24/2020

Ground Snow Load (P_g Fig 7.1) - 5 psf Ice Thickness (t Fig 10-2 to10-6) - 0.25 in

and Concurrent Wind Gust (V_c) - 30 mph Matthew T. Baldwin, P.E. Seismic Site Class B Florida License #64608

Page 1

Enclosure Dimensions & Component Weights

Gillette Generators - 246" Frame

Roof Style- Flat

Enclosure Dimensions (ft)

<u>Wall</u>	Length (ft)		Height (ft)
1	7.67	X	8.5625
2	7.67	X	8.5625
3	20.5	X	8.5625
4	20.5	Х	8.5625

Base Dimensions

Width (Wall 1/2 Side) = 92 in Length (Wall 3/4 Side) = 246 in Height = 8 in

Roof/Eave Information

Roof Pitch Angle - (θ) = 0.0 Degrees

Eave/Roof Height - h = 8.5625

Structure Areas

Walls 1/2 Area - (w1) = 65.7 ft^2 = 9,457 in^2 Walls 3/4 Area - (w3) = 175.5 ft^2 = 25,277 in^2 Roof Area - (R) = 157.2 ft^2 = 22,642 in^2

Base Side 1/2 (T1) = 736.0 in 2 Base Side 3/4 (T3) = 1,968.0 in 2

Component Weights

Genset = 4,540 lbs Enclosure = 11,300 lbs

=

Base = 600 lbs

MWFRS Net Pressures

Gillette Generators - 246" Frame

Wind

Analytical Procedure method and Load Combinations from ASCE 7 are utilized in these calculations.

Enclosure Classification	-	Enclosed	d
Exposure Category	-	D	
Basic Wind Speed	(V)	180	mph
Importance Factor (Wind)	(I_w)	1.15	
Wind Directionality Factors	(K_d)	0.85	
Internal Pressure Coefficients	(GC_{pi})	± 0.18	
Velocity Pressure Exposure Coefficient	(K_z)	1.03	
Roof Mean Height Above Ground Level	(z)	9.23	ft
Velocity Pressure	(q)	83.53	psf

Wind Direction 1									
		Enclosure							
		Wall #			Roof				
		1 2 3&4			Parallel to Ridge				
		'		304	(C _p)1)1 (Distance From Windward Edge)			(C _p)2
		Windward	Leeward	Side	0 to 4.3	4.3 to 8.6	8.6 to 17.1	> 17.1	(o p) =
Background Response Factor	(Q)	0.97	0.97	0.95			0.97		
Gust Effect Factors	(G)	0.91	0.91	0.90			0.91		
External Pressure Coefficients	(C _p)	0.80	-0.266	-0.70	-0.90	-0.90	-0.50	-0.3	-0.18
Net Pressures with + (GC pi) - psf	(Net _{p+})	45.7	-35.2	-67.8	-83.3	-83.3	-53.0	-37.8	-28.7
Net Pressures with - (GC_{pi}) - psf	(Net _{p-})	75.7	-5.2	-37.7	-53.3	-53.3	-22.9	-7.7	1.4

Wind Direction 2										
		Enclosure								
			Wall #		Roof - Normal To Ridge					
		3 4 1&2								
		3	4	4 102		p)1 (Distance From Windward Edge)			(C _p)2	
		Windward	Leeward	Side	0 to 4.3	> 4.3			(Op)2	
Background Response Factor	(Q)	0.95	0.95	0.97			0.95	5		
Gust Effect Factors	(G)	0.90	0.90	0.91			0.90)		
External Pressure Coefficients	(C_p)	0.80	-0.5	-0.70	-1.04	-0.70			-0.18	
Net Pressures with + (GC pi) - psf	(Net _{p+})	45.2	-52.7	-68.2	-93.4	-67.8			-28.6	
Net Pressures with - (GC_{pi}) - psf	(Net _{p-})	75.3	-22.6	-38.1	-63.3	-37.7			1.5	

Plus and minus signs signify pressures acting toward or away from the surfaces, respectively.

Snow

Importance Factor (Snow)	(I_s)	1.1	
Exposure Factor	(C _e)	8.0	
Thermal Factor	(C_t)	1.2	
Slope Factor	(C_s)	1.0	
Flat Roof Snow Load	(p_s)	10.5	psf

<u>Seismic</u>

Importance Factor (Seismic)	(I_{sm})	1.25	
Mapped Acceleration Parameter	(S _s)	0.1	Figures 22-1 Thru 22-14
Mapped Acceleration Parameter	(S ₁)	0.06	Figures 22-1 Thru 22-14
Site Coefficient	(F_a)	1	
Site Coefficient	(F_{v})	1	
MCE Spectral Resp. Accel. Short Per.	(S _{MS})	0.100	
MCE Spectral Resp. Accel. 1-s Period	(S_{M1})	0.06	
Design Spectral Accel. Short Period	(S _{DS})	0.067	
Design Spectral Accel. 1-s Period	(S_{D1})	0.04	
Fundamental Period of Structure	(T_a)	0.100	sec
Long Period Transistion Period	(T_L)	8	sec Figure 22-15 Thru 22-20
Seismic Design Category	-	Α	
Total Effective Seismic Weight	$(W_{\it eff})$	19,708	lbs
Response Modification Coeficient	(R)	2	Table 12.2-1
System Overstrength Factor	(Ω_{o})	2.5	Table 12.2-1
Deflection Amplification Factor	(C_d)	2	Table 12.2-1
Seismic Response Coefficient	(C _s)	0.042	

Resultant Seismic Forces

Horizontal Seismic Load Effect - (E_h) Force at Base of Base Fram = 0.2 kips Force at Top of Base Fram = 0.2 kips Force at Top/Bottom of Enclosure = 0.113 kips Force on Silencer = 0 kips

Vertical Seismic Load Effect $(E_v) = 0$ (Factor, Used With Deadweight in Load Combinations)

Structural Calculations - Roof

Gillette Generators - 246" Frame

Critical Loads & Pressures

Wind Pressures	Snow Pressure	Seismic Load
Downforce 1.477 psf = 0.01 psi Uplift -93.37 psf = -0.65 psi	'	Horizontal = 113.0 lbs Vertical Factor = 0
Roof Live Load		
	000 11 0 1 1 1 1	

Downforce 20.0 psf = 0.1389 psi or 300 lbs Concentrated Load

Pressures & loads are the numerical maximums to be analyzed for shear, bending tension, and compression.

Section Properties

11 Ga. Cold Rolled Steel Formed Channel

```
Cross Sectional Area
                            (A) = 1.88 \text{ in}^2
Moment of Inertia - x
                           (I_x) = 2.80 \text{ in}^4
Moment of Inertia - y
                           (I_y) = N/A in^4
                           (S_x) =
Section Modulus - x
                                     2.13 \text{ in}^3
                           (S_y) =
Section Modulus - y
                                     N/A in<sup>3</sup>
Radius of Gyration - x
                           (r_x)
                                 =
                                     1.22 in
Radius of Gyration - y
                           (r_v)
                                 =
                                     N/A in
Polar Moment of Inertia
                            (J)
                                 = 4.68 \text{ in}^4
Weight of Beam
                            (\omega) = 0.47 lbs/in
Modulus of Elasticity
                                 = 2.90E+04 ksi
                            (E)
Safety Factor
                            (\Omega) =
                                       1.67
Plastic Section Mod. - x (Z_x) =
                                       2.25
Plastic Section Mod. - y (Z_v) =
                                       1.85
Tensile Ultimate Strength
                                    (F_{tu}) = 58 \text{ ksi}
                                    (F_{tv}) = 36 ksi
Tensile Yield Strength
Compressive Yield Strength
                                    (F_{cv}) = 22 ksi
Shear Ultimate Strength
                                    (F_{su}) = 12 \text{ ksi}
```

Roof Frame Calculations

Member Designed for Forces Acting on the Strong Axis

Interior Beam Critical Member Dimensions

Interior Beam Length $(L_i) = 91.75$ in Load Spanned Width $(W_i) = 64$ in

Interior Beam Calculated Forces

Distributed Loads

Weight of Beam	(ω)	=	0.468	lbs/in
Wind Load Downforce	(W_d)	=	0.657	lbs/in
Wind Load Uplift Force	(W_u)	=	-41.498	lbs/in
Roof Live Load	(L_r)	=	8.889	lbs/in
Snow Load	(S)	=	4.667	lbs/in

Roof Live Load $(L_r) = 300.0$ lbs

Shear Forces (Maximum at End)

Beam Weight Shear Wind DownForce Shear Wind Uplift Shear	()		21.45 30.1 -1903.7	lbs lbs lbs
Max. Live Load Shear Snow Load Shear Seismic Load Shear	(V_{Lr}) (V_S) (V_E)	=	407.8 214.1 0.0	lbs lbs lbs
Total Shear Downward Total Shear Upward		=	429.2 1,882.3	lbs lbs
Design Shear	(V_{bi})	=	1882.3	<u>lbs</u>

Stress Forces (Bending)

Beam Weight Moment Wind Downforce Moment			328 461	lb∙in lb∙in
Wind Uplift Moment	(M_u)	=	-29,111	lb∙in
May Live Load Mamont	(1.1	_	6 226	lh in

Max. Live Load Moment $(M_{Lr}) = 6,236$ lb·in Snow Load Moment $(M_S) = 3273.691$ lb·in Seismic Load Moment $(M_E) = 0.0$ lb·in Total Moments Downward = 6,564 lb·in

Total Moments Upward = -28,783 lb·in

Design Moment $(M_T) = 28,783$ lb·in

 $\underline{\text{Design Stress}} \qquad \qquad (\sigma_{bi}) = \underline{13,526} \quad \underline{\text{psi}}$

Interior Beam Design Calculations

Allowable Shear Strength (V_n) = 16,200 lbs Design Shear Strength = 9,701 lbs

Shear Strength = 9,701 lbs 12/4/2019

Conclusion

 (V_{bi}) 1,882 lbs < (V_n) 9,701 lbs \underline{OK}

Allowable Stress For Flexure

Nominal Flexural Strength

Yielding (M_{nv}) 81,000 lb·in Flange Buckling (M_{nf}) 76,608 lb·in Web Buckling (M_{nw}) 80,573 lb·in

Design Flexural Strength 45,873 lb·in Design Flexural Stress (F_b) 21,557 psi

Conclusion

 (σ_{bi}) 13,526 psi < (F_b) 21,557 OK

Entire Roof Uplift Calculations

Roof Area

22,642 in² Area of Roof Subjected to Uplift (R)

Roof Uplift Calculated Forces

To be conservative, the weight of the roof frame and panels is neglected.

Weight of Accessories $(\omega_a) =$ lbs Wind Load Uplift Force $(w_{ru}) = -14,681$ lbs Total Roof Design Uplift $(W_{ru}) = -14,681$ lbs

Mounting Hardware - Roof Frame to Wall Panels

- Grade 18-8/SS Screws Along Length - 1 Side 15 5/16"-18 SS Bolts Screws Along Width - 1 Side - Grade 18-8/SS 6 5/16"-18 SS Bolts 42 5/16"-18 SS Bolts - Grade 18-8/SS **Total Mounting Screws**

Entire Roof Uplift Design Calculations

Grade 18-8 Ultimate Strength = 150,000 psi5/16" Bolt Nominal Diameter 0.313 in 5/16" Bolt Effective Area 0.052 in² 5/16" Bolt Threads per Inch 18 Washer Nominal Diameter = 0.500 in Wall Panel Tensile Ult. Strength 58 ksi Wall Panel Tensile Yield Strength = 36 ksi 3 Safety Factor Wall Panel Nominal Thickness 0.078 in Maximum Tensile Strength 377.5 lbs Maximum Shear/Bearing Strength = 416.0 lbs Max. Tensile Load per Screw 377.5 lbs

12/4/2019 Max. Total Screws Tensile Strength 15,854 lbs

Conclusion

 (W_{ru}) 14,681 (P_{ts}) 15,854 lbs <u>OK</u> Matthew T. Baldwin, P.E. lbs < Florida License #64608

Page 4 - 3

Roof Panel Uplift Calculations

Roof Panel Critical Member Dimensions

Critical Panel Length $(L_p) = 64$ in Critical Panel Width $(W_p) = 92$ in

Roof Panel Uplift Calculated Forces

Distributed Loads

Wind Load Uplift Force $(w_{pu}) = 3.817.8$ lbs

Mounting Hardware - Roof Panel to Roof Frame

Screws Along Length - 1 Side = 6 5/16"-18 SS Bolts - Grade 18-8/SS Screws Along Width - 1 Side = 2 5/16"-18 SS Bolts - Grade 18-8/SS

Roof Panel Uplift Design Calculations

Grade 410 Ultimate Strength 150,000 psi 5/16" Bolt Nominal Diameter = 0.313 in 5/16" Bolt Effective Area 0.052 in² 5/16" Bolt Threads per Inch 18 **Washer Nominal Diameter** 0.500 in Roof Panel Tensile Ult. Strength 58 ksi Roof Panel Tensile Yield Strength = 36 ksi Safety Factor 3 Roof Panel Nominal Thickness 0.078 in

Z-Bar Roof Frame 337.5 Maximum Tensile Strength 377.5 lbs (Accounts for screw pull-over and pull-out strengths) Maximum Shear/Bearing Strength = 416.0 416.0 lbs Max. Tensile Load per Screw 337.5 377.5 lbs $(P_{ts}) =$ Max. Total Screws Tensile Strength <u>5,560</u> <u>lbs</u>

Conclusion

 (W_{pu}) 3,818 lbs < (P_{ts}) 5,560 lbs **OK**

Roof Force Calculations - Applied to Single Critical Wall/Column Section

Distributed Loads

 $(L_{Ir}) =$ Live Load Downforce 8.89 lbs/in Wind Load Downforce $(L_d) =$ 0.66 lbs/in Wind Load Uplift Force $(L_u) =$ -41.50 lbs/in Snow Load Force $(L_S) =$ 4.67 lbs/in

Point Loads

Seismic Load

Critical Interior Beam $(w_{bi}) = 21.4$ lbs Max. Roof Live Load $(L_r) = 300$ lbs

 $(L_E) =$

0.00

lbs

Maximum Load Force From Roof to Single Wall Panel

Maximum Downforce $(W_d) = 430.5$ lbs Maximum Upforce (Wu) = 1,888.3 lbs (Results are used for the Structural Calculations - Walls/Columns)

Structural Calculations - Walls/Columns

Gillette Generators - 246" Frame

Critical Wind Load Pressures and Roof Forces

Walls 1 & 2

Maximum Pressures Acting:

Toward 75.7 psf = 0.5260 psi Away -68.2 psf = -0.4733 psi

Walls 3 & 4

Maximum Pressures Acting:

Toward 75.3 psf = 0.5229 psi Away -67.8 psf = -0.4706 psi

Roof Forces on Critical Panel (From Roof Frame Calculations)

Maximum Downforce $(W_d) = 431$ lbs Maximum Upforce (Wu) = 1,888 lbs

Pressures and weights are the numerical maximums to be analyzed for shear, tension, and compression.

Critical Wall Panel Dimensions

Critical/Maximum Panel Width = 60 in Critical/Maximum Panel Height = 108.5 in

Section Properties

14 Ga. Cold Rolled Steel Panel

1" Back Tabs

Cross Sectional Area $(A) = 5.08 \text{ in}^2$ Moment of Inertia - x $(I_x) = 2.34 \text{ in}^4$ Section Modulus - x $(S_x) = 9.31 \text{ in}^3$

Radius of Gyration - x $(r_x) = 0.68$ in

Modulus of Elasticity (E) = 2.90E+04 ksi

Factor of Safety $(\Omega) = 1.67$

Effective Length Factor (K) = 1.0 $(F_{tu}) =$ Tensile Ultimate Strength 58 ksi Tensile Yield Strength $(F_{tv}) =$ 36 ksi $(F_{su}) =$ Shear Ultimate Strength 12 ksi Compressive Yield Strength $(F_{cy}) =$ ksi

Critical Wall Panel Calculated Forces

Maximum Wind Pressure on Walls

Maximum + Wind Pressure = 0.5260 psi Maximum - Wind Pressure = -0.4733 psi

Plus and minus signs signify pressures acting toward or away from the surfaces, respectively.

12/4/2019

Maximum + Wind Shear = 31.6 lbs/in Maximum - Wind Shear = -28.4 lbs/in

Total Wind Shear on Critical Panel

<u>Total Panel Design Shear</u> $(V_{ww}) = 3,424.4$ <u>Ibs</u>

Critical Panel Roof Load (Roof to Wall)

Axial Roof Load $(W_{wr}) = 430.5$ lbs

Stress Forces (Flexure)

Maximum + Wind Moment = 15,481.0 lb·in Maximum - Wind Moment = -13,930.0 lb·in

Axial Roof Stress $(\sigma_r) = 84.7$ psi (Contributes to both + and - wind stresses)

Stress - Compression $(\sigma_{wc}) = 1,747.2$ psi Stress - Tension $(\sigma_{wt}) = 1,662.5$ psi

Mounting Hardware - Wall Panel to Wall Panel

To be conservative, the 'wall to roof' and 'wall to floor' connections are negleted.

Bolts Along Length - 1 Side = 6 5/16"-18 SS Bolts - Grade 18-8/SS

Total Mounting Screws = 12 5/16"-18 SS Bolts - Grade 18-8/SS

Wall Panel Design Calculations

Mounting Hardware - Shear and Tension

Grade 18-8 Ultimate Strength = 150,000 psi

Grade 18-8 Shear Strength = 30,000 psi (Includes Reduction Factor)
Grade 18-8 Tensile Strength = 57,000 psi (Includes Reduction Factor)

5/16" Bolt Effective Area = 0.0520 in² Shear Strength per Bolt = 1,560 lbs Tensile Strength per Bolt = 2,964 lbs

Total Bolts Shear Strength $(R_{vb}) = 18,720$ lbs Total Bolts Tensile Strength $(R_{tb}) = 35,568$ lbs

Allowable Stresses For Flexure with Axial Loading

Available Axial Stress $(F_{ca}) = 18,905$ psi Available Flexural Stress $(F_{cb}) = 77,266$ psi

Verification Ratio $(VR_{fa}) = 0.025$

Conclusions

Bolt Shear

 (V_{ww}) 3,424 lbs $< (R_{vb})$ 18,720 lbs **OK**

Stress (Flexure with Axial Loading)

 (VR_{fa}) 0.025 \leq 1.0

Matthew T. Baldwin, P.E. Florida License #64608

Structural Calculations - Enclosure to Base/Tank or Pad

Gillette Generators - 246" Frame

Critical Pressures & Loads

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

To be conservative, roof downforce is neglected.

Net Pressures with + Internal Pressure(+Gcpi)

Walls 1 & 2 -	80.9	psf =	0.5620	psi
Wall 3 or 4 -	67.8	psf =	0.4706	psi
Roof Uplift -	83.3	psf =	0.5787	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	80.9	psf =	0.5620	psi
Wall 3 or 4 -	37.7	psf =	0.2617	psi
Roof Uplift -	53.3	psf =	0.3699	psi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

Walls 3 & 4 -	97.9	psf =	0.6800	psi
Wall 1 or 2 -	68.2	psf =	0.4733	psi
Roof Uplift -	93.4	psf =	0.6484	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 3 & 4 -	97.9	psf =	0.6800	psi
Wall 1 or 2 -	38.1	psf =	0.2645	psi
Roof Uplift -	63.3	psf =	0.4396	psi

Seismic

Horizontal Seismic Force (E_h) = 113 lbs

Enclosure Critical Dimensions & Weights

Total Enclosure Weight	(W_t)	=	11,300	lbs	(Includes all components)
Walls 1/2 Area -	(w1) :	=	9457.1	in ²	
Walls 3/4 Area -	(w3) :	=	25276.5	in ²	
Roof Area -	(R) :	=	22641.8	in ²	

Enclosure Calculated Forces

Maximum Wind Load Forces on Walls

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Walls 1/2 -	=	5,315	lbs
Wall 3 or 4 -	=	11,894	lbs
Roof Unlift -	=	13 103	lbs

12/4/2019

Net Forces with - Internal Pressure (-Gcpi)

Walls 1/2 - = 5,315 lbs Wall 3 or 4 - = 6,616 lbs Roof Uplift - = 8,375 lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 - = 17,188 lbs Wall 1 or 2 - = 4,476 lbs Roof Uplift - = 14,681 lbs

Net Forces with - Internal Pressure (-Gcpi)

Walls 3/4 - = 17,188 lbs Wall 1 or 2 - = 2,501 lbs Roof Uplift - = 9,953 lbs

Enclosure Overturn Forces (Includes Seismic)

(Postive forces act upward, negative forces act downward)

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2 = 2,012 lbs Overturn on Walls 3/4 = 7,541 lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 1/2 = -353 lbs Overturn on Walls 3/4 = 2,230 lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 3/4 = 11,284 lbs Overturn on Walls 1/2 = 2,625 lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 3/4 = 8,920 lbs Overturn on Walls 1/2 = -151 lbs

<u>Design Overturn Force</u> $(O_E) = 11,284$ lbs Acting On Wall 3/4

Mounting Hardware - Enclosure to Base/Tank or Pad

To be conservative, bolt connections along the adjacent walls are neglected.

No. of Bolt Connections Along Wall 3/4 = 11 5/16"-18 SS Bolts - Grade 18-8/SS

Enclosure Overturn Design Calculations

Grade 18-8 Ultimate Strength = 150,000 psi

Grade 18-8 Shear Strength = 30,000 psi (Includes Reduction Factor)

5/16" Bolt Effective Area = 0.052 in^2

Shear Strength per Bolt = 1,560 lbs 12/4/2019

Total Bolts Shear Strength $(R_{vb}) = 17,160 \text{ lbs}$

Conclusion

 (O_E) 11,284 lbs $< (R_v)$ 17,160 lbs <u>OK</u>

Matthew T. Baldwin, P.E. Florida License #64608

Page 7 - 2

Structural Calculations - Enclosure With Base/Tank to Pad

Gillette Generators - 246" Frame

Critical Wind Load Pressures

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

To be conservative, roof downforce is neglected.

Net Pressures with + Internal Pressure(+Gcpi)

```
Walls 1 & 2 - 80.9 psf = 0.5620 psi
Wall 3 or 4 - 67.8 psf = 0.4706 psi
Roof Uplift - 83.3 psf = 0.5787 psi
```

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	80.9	psf =	0.5620	psi
Wall 3 or 4 -	37.7	psf =	0.2617	psi
Roof Uplift -	53.3	psf =	0.3699	psi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

Walls 3 & 4 -	97.9	psf =	0.6800	psi
Wall 1 or 2 -	68.2	psf =	0.4733	psi
Roof Uplift -	93.4	psf =	0.6484	psi

Net Pressures with - Internal Pressure(-Gcpi)

walls 3 & 4 -	97.9	pst =	0.6800	psi
Wall 1 or 2 -	38.1	psf =	0.2645	psi
Roof Uplift -	63.3	psf =	0.4396	psi

Seismic

Enclosure Horiz. Seismic Force	$(EE_h) =$	113	lbs
Base/Tank Horiz Seismic Force	(FB _k) =	197	lhs

Enclosure With Base/Tank Critical Dimensions & Weights

Total Enclosure Weight	$(W_t) =$	16,440	lbs	(Includes all components)
Walls 1/2 Area -	(w1) =	10,193	in^2	(Includes Base/Tank Surface Area)
Walls 3/4 Area -	(w3) =	27,245	in ²	(Includes Base/Tank Surface Area)
Roof Area -	(R) =	22,642	in ²	

Enclosure With Base/Tank Calculated Forces

Maximum Wind Shear Forces on Walls Including Base/Tank

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Walls 1/2 - = 5,728 lbs Wall 3 or 4 - = 12,820 lbs Roof Uplift - = 13,103 lbs 12/4/2019

Net Forces with - Internal Pressure (-Gcpi)

Walls 1/2 - = 5,728 lbs Wall 3 or 4 - = 7,131 lbs Roof Uplift - = 8,375 lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 - = 18,526 lbs Wall 1 or 2 - = 4,825 lbs Roof Uplift - = 14,681 lbs

Net Forces with - Internal Pressure (-Gcpi)

Walls 3/4 - = 18,526 lbs Wall 1 or 2 - = 2,696 lbs Roof Uplift - = 9,953 lbs

Enclosure with Base/Tank Maximum Wind Force = 18,526 lbs Acting On Wall 3/4

Coefficient of Friction - Steel to Wet Concrete $(\mu_s) = 0.45$ Frictional Resisting Force (Total Weight x μ_s) = 7,398

Enclosure with Base/Tank Design Shear $(V_{EB}) = \underline{11,128}$

Enclosure With Base/Tank Overturn Forces (Inlcudes Seismic)

Postive forces act upward

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2 = -322 lbs Overturn on Walls 3/4 = 6,198 lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 1/2 = -2,686 lbs Overturn on Walls 3/4 = 411 lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 3/4 = 10,420 lbs Overturn on Walls 1/2 = 264 lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 3/4 = 8,056 lbs Overturn on Walls 1/2 = -2,579 lbs

<u>Design Overturn Force</u> $(O_{EB}) = 10,420$ lbs Acting On Wall 3/4

12/4/2019

Mounting Hardware - Enclosure With Base/Tank to Pad

No. of Bolt Connections Along Wall 3/4 = 6 Bolts 1/2" Set Bolt Anchors - Grade 5/Galv.

Enclosure With Base/Tank Design Calculations

Mounting Hardware - Shear and Tension

Ultimate Stress Carbon Steel = 100,000 psiCarbon Steel Nom. Shear Stress = 40,000 psi 75,000 Carbon Steel Nom. Tensile Stress = psi 1/2 in. Bolt Nominal Area 0.196 in² in² 1/2 in. Bolt Net Tensile Area 0.142 Shear Strength per Bolt 3,920 lbs Tensile Strength per Bolt = 7,350 lbs

Avail. Tensile Strength per Bolt = 6,077 lbs (Combined Tension and Shear)

Total Bolts Shear Strength $(R_{vb}) = 23,520$ lbs Total Bolts Tensile Strength $(R_{tb}) = 36,465$ lbs

Conclusion

Shear

 (V_{EB}) 11,128 lbs $< (R_{tb})$ 23,520 lbs **OK**

Tension

 (O_{EB}) 10,420 lbs < (R_{tb}) 36,465 lbs <u>OK</u>